Modeling thermoelectric transport coefficients of multicomponent solid solutions

Maximilien Saint-Cricqa*, Ambroise van Roekeghem,a and Natalio Mingoa

a Universit\´e Grenoble Alpes, CEA LITEN, 38000 Grenoble, France

* maximilien.saintcricq@cea.fr

We describe two approaches to compute the Seebeck coefficient (or thermopower) and the electrical resistivity of the Nickel-based alloys containing Cr, Si and small amounts of Al, Co, Fe, Mn, Mg, Cu, P and C.

We first benchmark the applicability of the Gorter-Nordheim law to describe the experimental measurements of those multicomponent alloys. We find a good agreement between the calculated and the measured values of the Seebeck coefficient with a deviation of less than 2.5%.

![Figure 1: Calculated Seebeck vs. measured Seebeck](image)

Then, we present some preliminary results of the thermopower and the electrical resistivity directly calculated with an \textit{ab initio} method, using the Density Functional Theory (DFT) within the Local Density Approximation (LDA), called the Korringa-Kohn-Rostoker Green’s function method in the Coherent Potential Approximation (KKR-CPA)[1].