High temperature superconducting oxychlorides: a light element model for cuprates

Matteo d’Astuto

a. Institut NEEL CNRS/UGA UPR2940, 25 rue des Martyrs BP 166, 38042 Grenoble cdx 9, France

* matteo.dastuto@neel.cnrs.fr

The copper oxychloride cuprate \(\text{Ca}_2\text{CuO}_2\text{Cl}_2 \) (CCOC) system, with vacancy or Na doping on the Ca site, is unique among the high temperature superconducting cuprates (HTSCs) since it: lacks high Z atoms; has a simple \(\text{i}4/\text{mmm} \) 1-layer structure, typical of 214 (LSCO) cuprates, but which is stable at all doping and temperatures; and has a strong 2D character due to the replacement of apical oxygen with chlorine [1]. It also shows a remarkable phase digram, with a superconducting \(T_c \) growing to the optimal doping without any minimum around 1/8 doping, despite the observation of charge modulations by near-field spectro-microscopy [2]. Due to the reduced number of electrons, advanced calculations that incorporate correlation effects, such as quantum Monte Carlo [3], are easier, but relatively little is known about CCOC (for a cuprate) from an experimental point of view. We are now filling this gap by a comprehensive experimental study covering the whole phase diagram, in particular of the (para)magnon [4] and phonon dispersion [5].