Disorder-Induced Bose-Einstein Condensate in the Quantum Magnet DTNX at High Magnetic Fields

<u>Nicolas Laflorencie</u>^{a*}, Maxime Dupont^a, Sylvain Capponi^a, Anna Orlova^b, Rémi Blinder^b, Edwin Kermarrec^b, Hadrien Mayaffre^b, Claude Berthier^b, Armando Paduan-Filho^c, Mladen Horvatić^b

- a. Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France
- b. Laboratoire National des Champs Magnétiques Intenses, CNRS, EMFL, UGA, UPS, and INSA, Grenoble, France
- c. Instituto de Física, Universidade de São Paulo, Brazil
- * nicolas.laflorencie@irsamc.ups-tlse.fr \ll corresponding author \gg

The high magnetic field regime of the disordered (Br-doped) quasi-one-dimensional S=1 antiferromagnetic material DTNX, Ni($CI_{1-x}Br_x)_2$ -4SC(NH₂), was believed to provide the first experimental realization of the elusive *Bose-Glass* phase in a quantum magnet [1]. However, the recent experimental and theoretical works [2-5] revealed a much richer scenario where *impurity-induced* localized bosonic degrees of freedom (building blocks for the putative Bose-Glass) form a new kind of Bose-Einstein condensate at low temperature: the BEC* phase (Fig. 1). This is a purely many-body effect where interactions and disorder cooperate to restore a phase coherence via an "order-by-disorder" mechanism [6].

Figure 1: Left: Sketch of the global phase diagram of DTNX, where colors denote the BEC (blue) and BEC* (red) phases, and the Bose-glass (BG, yellow) regime. Right: Focus on the higher field regime. The critical temperature determined from quantum Monte Carlo simulations for x = 12.5% doping (blue open diamonds) is compared to T_c estimates from $1/T_1$ NMR data in an $x = 13 \pm 1\%$ doped sample. Adapted from [5].

- [1] R. Yu et al., Nature 489, 379 (2012).
- [2] A. Orlova et al., Phys. Rev. Lett. 118, 067203 (2017).
- [3] M. Dupont, S. Capponi and N. Laflorencie, Phys. Rev. Lett. 118, 067204 (2017).
- [4] M. Dupont et al., Phys. Rev. B 96, 024442 (2017).
- [5] A. Orlova *et al.*, preprint, arXiv:1801.01445.
- [6] J. Villain et al., J. Phys. France 41, 1263 (1980).