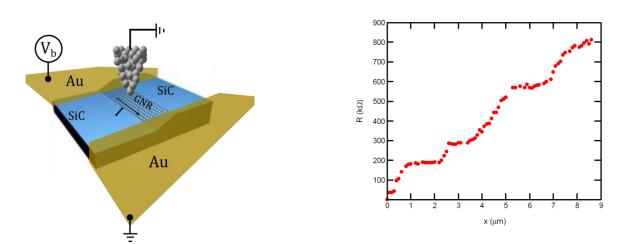
Mapping Local Resistance of Sidewall Graphene Nanoribbons

<u>A. De Cecco</u>^{1,2}, V. Prudkovskiy², D. Deniz³, Y. Hu³, Y. Hu³, J.-P. Turmaud³, J. Gigliotti³, L. Ma⁴, C. Berger^{2,3}, W. A. de Heer^{3,4}, H. Courtois^{1,2}, C. B. Winkelmann^{1,2}

¹ Université Grenoble Alpes, Institut Néel, 25 Avenue des Martyrs, 38042 Grenoble, France

² CNRS, Institut Néel, 25 Avenue des Martyrs, 38042 Grenoble, France

³ School of Physics, Georgia Institute of Technology, Atlanta, USA


⁴ TICNN, Tianjin University, China

Epitaxial graphene on SiC represents one of the most promising candidates for large-scale integration of graphene-based electronics. In particular, epitaxial graphene sidewall nanoribbons (GNRs) are nanostructures of fundamental interest which can provide direct and controllable access to charge neutral graphene [1]. High-temperature epitaxial growth methods can provide exceptionally homogeneous and pure GNRs samples [2]. Due to quantum confinement effects, exceptional ballistic transport at room temperature was recently observed in these systems [3]. Ballistic transport in graphene close to the Dirac point has been the subject of several theoretical studies, but its fundamental aspects are not yet fully understood.

Using a cryogenic combined AFM/STM setup, we measure the local resistance and potential of GNR-based devices with nm-scale spatial resolution and μ V-scale voltage resolution. Local potential and resistance, measured at room temperature both in the invasive and non-invasive probe regimes, show plateaus and non-constant slopes which provide clear indication of non-diffusive transport.

References:

- [1] Palacio et al., Nano Lett. 15 (1), pp. 182–189 (2014)
- [2] Sprinkle et al., Nature Nanotechnology 5, pp. 727–731 (2010)
- [3] Baringhaus et al., Nature 506, pp. 349–354 (2014)

Fig. (*left*) Schematic representation of a sidewall GNR between two metallic contacts explored by a scanning probe tip. (*right*) Local resistance to nearest contact as a function of distance showing plateaus and varying slopes.