Large voltage tuning of Dzyaloshinskii-Moriya Interaction: a route towards dynamic control of skyrmion chirality.

Titiksha Srivastava, a* Marine Schott, a, b Roméo Juge, a Viola Křížáková, b Mohamed Belmeguenai, c Yves Roussigné, c Anne Bernand-Mantel, b Laurent Ranno, b Stefania Pizzini, b S. M. Chérif, c A. Stachkevitch, c Stéphane Auffret, a Olivier Boulle, a Gilles Gaudin, a Mair Chshiev, a Claire Baraduc, a and Hélène Béa a

Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP*, INAC-Spintec, 38000 Grenoble, France, † Institute of Engineering Univ. Grenoble Alpes

b. Univ. Grenoble Alpes, CNRS, Néel Institute, F-38042 Grenoble, France

c. Laboratoire des Sciences des Procédés et des Matériaux, Univ. Paris 13 Nord, Villetaneuse, France

* titiksha.srivastava@cea.fr

Electric control of magnetism is a pre-requisite for efficient and low power spintronic devices. More specifically, in heavy Metal/Ferromagnet/Insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties like interface anisotropy and saturation magnetization [1,2]. However its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI) [3], which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and therefore has not been reported yet for ultrathin films.

Here, we demonstrate 140% variation of DMI with electric field in sputter deposited Ta/FeCoB/TaOx trilayers through Brillouin Light Spectroscopy (BLS). We further show a monotonic variation of DMI and skyrmionic bubble size with electric field by polar-Magneto-Optical-Kerr-Effect microscopy. Our experiments show an unprecedented electric field efficiency for DMI $\beta_{DMI} = 700 \text{fJ/Vm}$. The efficient DMI manipulation with voltage thus establishes an additional degree of control over skyrmions and spin orbitronic based devices. We anticipate through our observations that a sign reversal of DMI with electric field is possible, leading to a chirality switch. This dynamic engineering of DMI lays the foundation towards programmable skyrmion based memory or logic devices.

Figure 1: BLS spectra (open symbols) and Lorenztian fits (lines) measured under 0V (a) and -10V (b). The frequency difference Δf changes by 140% at -10V. (b) Variation of frequency difference Δf and deduced interfacial DMI as a function of applied voltage.