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The fluctuation-Dissipation Theorem is a cardinal tool of Statistical Physics. This rela-
tion yields to the Equipartition Principle, thanks to which we can link the fluctuations
of an observable with the temperature of the system. All of this is nevertheless granted
at equilibrium. Our purpose is to test what happens out of this safe region.

In our experiment, shown in Fig. 1, we study a system in a Non equilibrium Steady
State (NESS): a silicon micro-cantilever subject to a heat flux due to a laser heating.
We measure the thermal noise driven deflexion and torsion and quantify the amplitude of
the fluctuations with an effective temperature T eff , extending the equipartition principle:
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with kB Boltzman’s constant, k the stiffness and 〈x2〉 the mean square deformation. Out
of equilibrium, an excess of fluctuations is usually expected, as found out for example
by Conti et al. in a similar system1 (Fig. 1). Following Geitner et al.2 we find on the
contrary a strong deficit of thermal noise of the cantilever with respect to the average
temperature T avg of the system ! Further experiments and theoretical progress are thus
necessary to clarify these contracticting behaviors.
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FIG. 1. Schematic drawing of the elastic body consisting in a rod with one extreme fixed and the other loaded by a mass
and free to move. A pair of thermometers sensed the temperatures T1 and T2 of the rod extremes (a): for the latter case a
contact-less thermopile was used. The temperature T1 of the rod top end was stabilized actively; when the heat source shown
on the left of the bottom mass was switched on, a thermal di↵erence was set across the body. The thermal profile along the
rod in the steady state is shown in a color code (increasing temperature from blue to red). The central (b) and right (c) figure
parts show the deformation of the body respectively in the transverse and longitudinal mode. The shape of the elastic body at
rest is shown as dashed line for comparison. The end mass vibrations were measured by a capacitive readout formed by facing
the bottom surface of the mass to a fixed and electrically insulated electrode, shown as a rectangle in the picture parts b and c.

The Equipartition of energy is arguably the chief principle relating microscopic motions to macroscopic observables,
such as temperature, density and volume[1]. For equilibrium systems with negligible quantum e↵ects, the principle
states that every quadratic degree of freedom within the Hamiltonian possesses on average an energy kBT/2 , with
kB the Boltzmann constant and T the absolute temperature.

The equilibrium state is an idealization. A simple nonequilibrium situation is produced by temperature di↵erences[2,
3]. For fluid systems it has been both argued theoretically[4–6] and demonstrated experimentally that spatio-temporal
fluctuations grow markedly for the lowest wave numbers[7–11]. Nonequilibrium statistical mechanics[12] and nonequi-
librium molecular dynamics techniques[13] have led to similar conclusions, with a growth of the correlations as the
signature of the departure from equilibrium. In Extended Thermodynamics[14], either local thermal equilibrium is
assumed, or the temperature is defined via an extended flux-dependent entropy[15]. In disordered systems, the notion
of time-scale-dependent e↵ective temperatures is often used[16]. Solids are seldom investigated in this context, per-
haps because their microscopic degrees of freedom are generally assumed to satisfy local equilibrium. A more florid
enterprise is constituted by research in small and low-dimensional systems[17–23].

We report an experimental study of the mean energy of harmonic oscillators in and out of equilibrium. The harmonic
oscillator is ubiquitous and is applied to the most diverse situations in both classical and quantum physics[24]. In
the low losses approximation, the response of a system is often written in terms of normal modes, each considered
as an independent harmonic damped oscillator. Our oscillators are low-frequency acoustic modes of vibration of a
macroscopic aluminum piece[25]. The nonequilibrium steady states (NESS) are due to sustained thermal di↵erences
across the piece.

The piece consisted of a 0.1 m long rod with one end clamped and the other one loaded by a freely moving 0.2 kg
mass; Figure 1 shows schematically the deformation of the piece corresponding to the first transverse and longitudinal
modes (our two oscillators), which resonated respectively at about 324 Hz and 1420 Hz. With a capacitive readout
we measured vibrations of the end-mass: the readout output signal was acquired continuously and its Power Spectral
Density (PSD) was computed and averaged over contiguous periods. Figure 2 shows a typical average PSD around
the resonance of the longitudinal mode fitted by a Lorentzian curve plus a constant, accounting for the electronic
noise.

In the case of the longitudinal mode, the output signal can be converted into longitudinal vibrations of the mass.
The area of the fitting curve becomes an estimate of the mean square vibration
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of the oscillator, where the
angular brackets denote a time average. At thermodynamic equilibrium with low losses, in the absence of external
noises the law of equipartition dictates that:
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where ml is the mass of the longitudinal mode that resonates at !l. Thus, thanks to equipartition, the thermodynamic
temperature can be inferred from the energy stored in the mode. In general, i.e. even in NESS, we call e↵ective
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Figure 1: (Left) Effective temperature T eff of a system under a heat flow as a function of
the difference of temperature ∆T at its extremities. All temperatures are normalized to the
average temperature T avg. (Upper right) Conti’s setup1. (Lower right) Our experiment2.


