Ferroelectric leverages for solid state cooling

Brahim Dkhil*

Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS-UMR8580, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

*on behalf of the many authors

* brahim.dkhil@centralesupelec.fr

The search for alternative solid-state refrigeration materials to hazardous gases in conventional and cryogenic cooling devices is a very active field of condensed matter [1,2]. The use of phase transitions is a powerful tool to achieve giant caloric effects in ferroic materials in which magnetization, polarization, strain and/or volume can be strongly tuned under a moderate external stimulus. Here, we explored various aspects of ferroelectrics to reveal their potentialities as solid state coolers such as the ferroelectric phase transitions, the multiphase points composition, the stress-sensitivity through elasto- and baro-caloric responses, the inverse electrocaloric effect evidenced for instance in antiferroelectrics, the asymmetric effect arising from non-ergodic states, the use of dual-stimuli by taking advantage of multicaloric effects combining stress and electric field in ferroelectrics or magnetic and electric fields in multiferroics, as well as the use of defects [3-12].

[11] T. Li et al., to be published
[12] J. Li et al., to be published

B.D. acknowledge Fonds National de la Recherche (FNR) du Luxembourg through the InterMobility project 16/1159210 "MULTICALOR"