Anisotropic spin separation in the Gd pyrochlore iridate

L. Mangin-Thro^{a*}, E. Lefrançois^{a,b}, E. Lhotel^b, J. Robert^b, S. Petit^c, P. Lejay^b, V. Cathelin^b, C. V. Colin^b, F. Damay^c, J. Ollivier^a, H. Fischer^a, L. C. Chapon^a, R. Ballou^b, V. Simonet^b

- a. Institut Laue-Langevin, CS 20156, 38042 Grenoble, France
- b. Institut Néel, CNRS & UGA, 38042 Grenoble, France
- c. Laboratoire Léon Brillouin, CEA, CNRS, Univ. Paris-Saclay, 91191 Gif-sur-Yvette, France
- * mangin-throl@ill.fr

The Ir-5d electrons in most iridate pyrochlores $R_2Ir_2O_7$ (R = Rare Earth) exhibit a spinorbit driven metal-insulator transition accompanied by an ordering of the Ir sublattice in the so-called "all-in all-out" order: magnetic moments pointing towards or away from the centre of each corner-sharing tetrahedron, as shown in the figure. This induces a noncollinear magnetic field on the R moments through the R-Ir magnetic interactions. **This well-controlled staggered molecular field is a new parameter allowing to explore the rich physics of frustrated rare-earth pyrochlores** [1]. At low temperature, it favours new magnetic ground states in these systems due to its competition with the single-ion anisotropy of the rare-earth (with respect to the local <111> directions of the tetrahedron) and with the interactions between the rare-earth ions. In Ho₂Ir₂O₇, this staggered molecular field leads to the fragmentation of the magnetization [2,3].

At variance with the Ising Ho³⁺ moment, here we focus on the behaviour of the much more isotropic magnetic moment of the Gd^{3+} ion on the rare-earth site that we study through magnetometry and neutron scattering. We find a complex situation in $Gd_2Ir_2O_7$ where different components of the magnetic moment are decoupled. They contribute respectively to a high temperature all-in all-out order (easy-axis component of the magnetic moments) polarized by the Ir molecular field and to complex antiferromagnetic correlations between the easy-plane components that tend to order at much lower temperature. We succeeded in reproducing these exotic behaviours with a simple model comprising in particular the anisotropic dipolar interactions.

- [1] E. Lefrançois *et al.* Phys. Rev. Lett **114**, 247202 (2015).
- [2] E. Lefrançois et al. Nature Communications 8, 209 (2017).
- [3] Brooks-Bartlett et al. Phys. Rev. X 4, 011007 (2014).

Figure 1: The two interpenetrating pyrochlore lattices with Ir^{4+} (blue) and the rare-earth R^{3+} (red). The Ir subattice orders in the all-in all-out arrangement inducing the same magnetic order on the R sublattice.