Transition metal delafossites: from 2D metallicity to multiferroism

Antoine MAIGNAN⁹, Ramzy DAOU⁹, Raymond FRESARD⁹, Sylvie HEBERT⁹ and Christine MARTIN⁹

a. Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT - 6 Bd du Maréchal Juin - 14050 Caen cedex - France

* antoine.maignan@ensicaen.fr

Delafossite oxides of AMO₂ formula are exhibiting a very broad range of physical properties related to their layered structure. The latter can be viewed as "natural" heterostructures made of alternating triangular A⁺ and (MO₂⁻)⁻ layers. On the one hand, in the case of A=Cu⁺ and M³⁺=3d magnetic cation, multiferroic properties connected to complex antiferromagnetic structures, as in CuCrCO₂ [1], are observed, whereas, on the other hand, as for A=Pd⁺ and B=Co³⁺ (d⁶, LS, S=0), a very 2D metallic behaviour is evidenced with strong anisotropies of both resistivity and thermal conductivity (Fig.1).

In the presentation, some examples will be chosen to illustrate the richness of the physical properties for these 2D materials [2].


Fig.1: Anisotropic transport in PdCoO₂ crystals.