As-grown state of pinwheel artificial spin ice

M. Massourasa*, F. Montaignea, D. Lacoura et M. Hehna

a. Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, 54000 Nancy, France

e-mail: maryam.massouras@univ-lorraine.fr

Artificial Spin Ice (ASI) systems made of two-dimensional arrays of nanomagnets in close interaction provide a playground to directly observe magnetic frustration[1, 2]. By the use of shape anisotropy, mesoscopic Ising-like spins could be patterned with various spatial distributions. In this study, we examine the square lattice and modified such that each nanomagnet is tilted around its central point from 5° to 45° every 5°. Both extreme cases, square and 45°-tilted lattice have been studied[1, 2], the latter is called “pinwheel ASI”. They are fabricated using electron beam lithography and liftoff to define 20nm-thick Permalloy nanomagnets with 400 x 100 nm2 lateral dimensions. Before any field history, we investigated the as-grown state just after lift-off. Magnetic Force Microscopy (MFM) configurations are shown in Fig. 1 (a) and (b). We find that the ground state (GS) of the regular square lattice is different from the pinwheel ASI: one corresponding to the ice-rule and the other a ferromagnetic state respectively. In this talk, we will give a comprehensive picture of the evolution of the GS and micromagnetic configuration as a function of angle.

\textbf{Figure 1:} (a) MFM image of an as-grown square ice network exhibiting GS following the ice rule (b) MFM image of a 45° tilted network exhibiting ferromagnetic GS.