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Density-functional theory (DFT) has become an invaluable tool in materials science.
Recently, the precision of different approaches has been scrutinized for the PBE func-
tional using extremely accurate numerical settings [1]. However, little is yet known
about code- and method-specific errors that arise under more commonly used numerical
settings, e.g, in high-throughput calculations. This constitutes a severe issue, since it
prevents repurposing DFT data created using different settings and/or codes, for instance
the calculations stored in the NOMAD [2] or other repositories [3,4,5].

To overcome this, we study the convergence of different properties (geometries, total and
relative energies) in four conceptually-different DFT codes (exciting, FHI-aims, GPAW,
and VASP) for typical settings used in production calculations. Specifically, we discuss
relative and absolute errors as a function of the numerical settings, e.g., basis sets and
k-grids, for 71 elemental solids [1]. Using this data, we propose an analytical model
that allows for error estimates for any compound, as we explicitly demonstrate for 73
binary and ternary solids. We show how the developed formalism can be incorporated
into electronic structure theory databases so that data created using different settings
and/or codes becomes quantitatively comparable [6], e.g., so to use it in machine-
learning approaches. Eventually, we discuss the extensibility of our approach towards
more complex materials properties.

[1] K. Lejaeghere, et al., Science 351, aad3000 (2016).

[2] L. M. Ghiringhelli, et al., NPJ Computational Materials 3, 46 (2017).

[3] C. E. Calderon, et al., Comput. Mater. Sci. 108, 233 (2015).

[4] A. Jain, et al., APL Materials 1, 011002 (2013).

[5] J. E. Saal, et al., JOM 65, 1501 (2013).

[6] https://analytics-toolkit.nomad-coe.eu/

https://analytics-toolkit.nomad-coe.eu/

