Towards Single Spin detection using microwaves

*J.F. Silva Barbosa*¹, P. Campagne-Ibarcq¹, P. Jamonneau^{1,2}, S. Probst¹, Y. Kubo¹, A. Bienfait¹, T. Teraji³, S.Pezzagna⁴, D. Vion¹, R. Heeres¹ and P. Bertet¹

¹*Quantronics Group, SPEC, CEA-Saclay*, France, ²LPQM, ENS de Cachan, France, ³NIMS, University of Tsukuba, Japan, ⁴Department of Nuclear Solid State Physics, Leipzig University, Germany

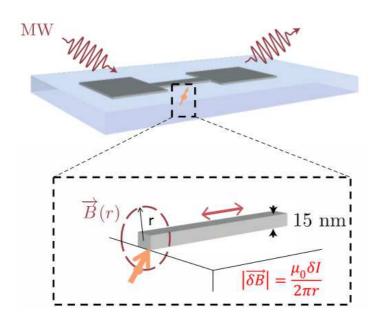


Figure.1: Sketch of our method

Our project aims at detecting a single spin using magnetic resonance techniques by coupling it to a high quality factor superconducting resonator. The electron spins of choice are shallow (~15 nm) implanted single Nitrogen-vacancy (NV) centers in an ultrapure isotopicallyenriched C12 diamond layer. After characterization at room temperature using а confocal microscopy, an Aluminium microwave resonator is fabricated on top with a nanometric constriction (width ~40 nm) carefully aligned to a pre-selected NV center.

The constriction enhances the magnetic field generated by the microwave frequency current, and therefore allows to increase the spin-resonator coupling strength to a range of 1 - 5 kHz. Microwave-only measurements in a dilution refrigerator at 20mK should then allow to observe a spin-echo signal from a single spin.