Size effects for amorphous crystallization kinetics: Constraints imposed by nucleation and growth specificities

Marc Descamps*, Jean-François Willart

Université de Lille, CNRS UMR 8207 – UMET – Unité Matériaux et Transformations, F-59000, Lille

The main purpose of the presentation is to highlight the intrinsic link between the nucleation rate and growth rate with a temperature dependent characteristic transformation time $\tau(T)$, and a characteristic size $\xi(T)$. The consequences on the influence of the sample size on kinetics of crystallization is considered. The expression of the kinetic crystallization rate, X(t), of a nucleation and growth transformation is fundamentally dependent on the position of the sample size (L) with respect to ξ . It changes from an Avrami like behavior for $L>>\xi$ to a size dependent exponential regime for $L<<\xi$. The significance of size effect and confinement for amorphous stabilization in the pharmaceutical sciences is discussed.

Marc Descamps, Jean-François Willart *International Journal of Pharmaceutics* 542 (2018) 186–195

2-Dimensional simulation of the time evolution of the transformed fraction X(t) for different grain sizes (from above to below ξ).

^{*} marc.descamps@univ-lille1.fr.