Role of nonlocal Coulomb correlations in pure and electron-doped $\mathbf{S r}_{2} \mathbf{I r O}_{4}$

Benjamin Lenz ${ }^{\text {a* }}$, Cyril Martins, ${ }^{\text {b }}$ and Silke Biermann ${ }^{\text {a,c }}$

a. Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644, Université ParisSaclay, 91128 Palaiseau, France
b. Laboratoire de Chimie et Physique Quantiques, UMR 5626, Université Paul Sabatier, 118 route de Narbonne, 31400 Toulouse, France
c. Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

* benjamin.lenz@polytechnique.edu

The quasi-2D spin-orbit system $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$ has raised tremendous interest recently, due to intriguing similarities to the high-Tc superconducting copper oxides. We study the evolution of the electronic structure of this material using a combination of ab initio density functional theory and many-body techniques. The effects of spin-orbit coupling, distortions of the oxygen octahedra and Hubbard interactions are included on a firstprinciples level. We calculate the momentum-resolved spectral function and compare to recent angle-resolved photoemission data, finding good agreement with experiment. Furthermore, we study the evolution of the electronic structure of $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$ upon electrondoping. We show that short-range antiferromagnetic fluctuations are crucial to account for the electronic properties of the material even in the high-temperature paramagnetic phase. The emerging exotic metallic state exhibits pseudo-gap spectral features in good agreement with experiments on La-doped $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$, for which we propose a surprisingly simple theoretical mechanism.
[1] C. Martins, B. Lenz, L. Perfetti, V. Brouet, F. Bertran, and S. Biermann, Nonlocal Coulomb correlations in pure and electron-doped $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$: Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory, Phys. Rev. Materials 2, 032001 (2018)

Figure 1: Constant energy maps of the spectral density at -0.5 eV (left) and -0.25 eV of undoped $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$. Experimental and theoretical spectral densities show good agreement.

