Unravelling Dzyaloshinskii-moriya interaction and chiral nature of graphene/cobalt interface

F. Ajejas1,2,*, A. Gudín2, R. Guerrero2, M. A. Niño2, S. Pizzini4, J. Vogel4, M. Valvidares5, P. Gargiani5, M. Varela6, Julio Camarero2,3, Rodolfo Miranda2,3 and Paolo Perna2

1 Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau, France.
2 IMDEA Nanociencia, 28049 Madrid, Spain.
3 DFMC, Instituto “Nicolás Cabrera” & IFIMAC, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
4 CNRS, Institut Néel Université Grenoble Alpes, 38000 Grenoble, France.
5 ALBA SYNCHROTRON LIGHT SOURCE, Cerdanyola del Vallès, 08290 Barcelona, Spain.
6 DFM, IMA & Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040, Madrid, Spain.

* Corresponding author email: fernando.ajejas@cnrs-thales.fr

The development of room temperature graphene-based spintronic devices requires that, in addition to its passive capability to transmit spins over long distances and spin lifetime [1], other active properties are incorporated to graphene. Long range magnetic order and spin filtering in graphene can be achieved by molecular functionalization [2,3] as well as by the introduction of giant spin-orbit coupling (SOC) in the electronic bands of graphene by intercalation of adequate metals [4].

Here, we report on high quality, gr/Co(111)/Pt(111) stacks grown epitaxially on MgO(111) crystals, characterized by XPS-UPS, LEED, STEM, Kerr Magnetometry, XMCD and Kerr Microscopy, that exhibit enhanced perpendicular magnetic anisotropy (PMA) for Co layers up to 4 nm thick and left-handed Néel-type chiral DWs stabilized by interfacial Dzyaloshinskii–Moriya interaction (DMI) localized at both graphene/Co and Co/Pt interfaces with opposite sign [6]. While the DMI at Co/Pt side is due to the intrinsic SOC, the sizeable DMI experimentally found at the gr/Co interface has Rashba origin [5]. The active magnetic texture is protected by the graphene monolayer and stable at 300 K in air, and, since it is grown on an insulating substrate, amenable to transport measurements [5].

The discovery of a strong DMI at the Graphene/Cobalt interface is a crucial step to promote 2D materials spinorbitronics based on the electrical control of the transport and manipulation of topologically protected magnetic structures, such as chiral domain walls and skyrmions [6].