Fabrication and thermal characterization of silicon membranes for integrated thermoelectric converters

Jean-François Robillarda*, Thierno Baha,b, Di Zhoua, Stanislav Didenkoa, Tianqi Zhua, Valeria Lacatena, Maciej Haras, Antonin Massoud, Emmanuel Duboisa, Jean-Marie Bluetc, Olivier Chapuisd et Stéphane Monfrayb

\begin{itemize}
 \item a. Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille, France
 \item b. STMicroelectronics - 850 rue jean Monnet 38920 Crolles, France
 \item c. Institut des Nanotechnologies de Lyon (INL) – CNRS, INSA, UCBL, Campus La Doua LyonTech – Lyon, France CETHIL
 \item d. Centre for Energy and Thermal Sciences, Lyon (CETHIL) – CNRS, INSA, UCBL, Campus La Doua LyonTech – Lyon, France
\end{itemize}

* jean-francois.robillard@isen.iemn.univ-lille1.fr

In this talk, we report on the CMOS-compatible fabrication process of ultrathin silicon membranes (60 nm) from Silicon-on-Insulator (SOI) wafers. Additionally, the membranes are periodically perforated at deca-nanometer scale in order to reduce drastically thermal transport with low impact on the electrical conductivity in a so-called phonon-engineering approach [1]. As shown on figure 1, the process enables the fabrication of a wide variety of MEMS devices that can be used for: i) Thermal characterization by means of electro-thermal measurements [2], ii) Raman thermometry measurements of thermal conductivity [3], iii) Scanning Thermal Microscopy (SThM) study of thermal transport [4] and iv) integration as thermoelectric material in energy harvesting demonstrator [5].

\textbf{Figure 1:} (a) Suspended membrane equipped for electro-thermal characterization (scale 60µm). (b) Scanning Electron Micrograph of the surface nano-patterns (scale 250 nm). (c) Transmission Electron Micrograph of a hole pattern before membrane suspension (scale 40 nm). (d) Demonstrator of two thin-film thermopiles (scale 10 µm).

This work was supported by: i) the European Research Council (FP7/2007-2013) Grant Agreement no. 338179, ii) the French RENATECH network, iii) the French National Research Agency (ANR) under program PIA EQUIPEX LEAF ANR-11-EQPX-0025.

[3] A. Massoud et al., \textit{in preparation}
[5] T. M. Bah et al., submitted to IEEE-SSDM