Gate-tunable quantum phase transition of the ground state of a magnetic impurity coupled to a superconductor

A. Garcia-Corralla, D. M. T van Zantena, S. Florensa, D. M. Baskob, K. J. Frankec, H. Courtoisa and C. B. Winkelmanna

a. Université Grenoble Alpes, CNRS, Institut Néel, 25 avenue des Martyrs, 38042 Grenoble, France
b. Laboratoire de Physique et Modélisation des Milieux Condensés, Université Grenoble Alpes, CNRS, 25 avenue des Martyrs, 38042 Grenoble, France
c. Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

* alvaro.garcia-corral@neel.cnrs.fr

A quantum dot coupled to a superconducting surface may act as a tunable magnetic impurity, controlled by an external gate potential. The competition of magnetism and superconductivity can give rise to sub-gap excitations at the superconductor surface (Yu-Shiba-Rusinov bound states) \cite{1}. Further, if the tunnel coupling to one of the leads is strong enough, quantum correlation effects can lead to a Kondo resonance, corresponding to a magnetic moment screened by the conduction electrons. By tuning the gate, we modulate the Kondo temperature T_K in the normal state, and consequently the energy of the sub-gap bound states $E_{B\pm}$. When the bound state energy goes to zero, a quantum phase transition of the system between a screened and unscreened local spin state occurs. Our results demonstrate the universality of this transition taking place at $\Delta/T_K \approx 2.5$, confirming previous theoretical predictions \cite{2}.

\cite{1} B. W. Heinrich, J. I. Pascual and K. J. Franke, Single magnetic adsorbates on s-wave superconductors, arXiv:1705.03672v2 (2017)
\cite{2} M.-S. Choi et al, Kondo effect and Josephson current through a quantum dot between two superconductors, Phys. Rev. B 70, 020502(R) (2004)

Figure 1: (a) Differential conductance mapping of the sub-gap states versus gate voltage. The system formed by a superconducting lead strongly coupled to the quantum dot is probed spectroscopically by a second, weaker coupled lead, also superconducting. (b) Extracted bounded states energy displaying the phase transition for $\Delta/T_K \approx 2.5$.