Etude par ultrasons de supraconducteurs à base de lanthane en champs magnétiques intenses

Mehdi Frachet, a,b, David Le Boeuf, a, Siham Benhabib, a, Cyril Proust, a, Jérôme Debray c

a. Laboratoire National des Champs Magnétiques Intenses, Grenoble/Toulouse
b. Université Grenoble Alpes
c. Institut Néel, Grenoble

* correspondance to : mehdi.frachet@lncmi.cnrs.fr

Lanthanum based cuprate superconductors are highly correlated electrons systems well-known for their structural, magnetic, charge and superconducting instabilities. In under-doped compound (i.e. for doping less than optimal for superconductivity) a dip in the onset temperature for superconductivity T_c, centered at $p \sim 0.125$, occurs, know as the "1/8 problem". While the origin of this dip is still under debate, most of the experimental evidence in $La_{2-x}Sr_xCuO_4$ (LSCO) seems to point toward a competition with frozen magnetism whose onset temperature is higher when superconducting T_c is lower.

In order to further investigate the relationship between magnetism and superconductivity we have performed measurements of ultrasonic velocity and attenuation in LSCO. Around $p=1/8$, several anomalies are observed in the sound velocity and attenuation, associated with superconductivity and magnetic freezing. The competition between the two orders parameters is tuned with a magnetic field which enhances magnetic correlations at the expense of superconductivity.