Spin lattices of walking droplets

Giuseppe Puccia,b,*, Pedro J. Sáenza, Alexis Goujona, Jörn Dunkela, and John W. M. Busha

a. Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
b. Institut de Physique de Rennes, UMR 6251 CNRS and Université Rennes 1, 35042 Rennes Cedex, France

* gpucci@mit.edu

Millimetric liquid droplets can walk while bouncing on the surface of a vibrating liquid bath \cite{Couder2005, Bush2015}. We present experiments that demonstrate the spontaneous emergence of collective behavior in spin lattices of these walking droplets \cite{Saez2018}. Circular wells at the bottom of the fluid bath encourage individual droplets to walk in clockwise or counterclockwise direction along circular trajectories centered at the lattice sites. A thin fluid layer between the wells enables wave-mediated interactions between neighboring walkers resulting in coherent rotation dynamics across the lattice. When the pair-coupling is sufficiently strong, interactions between neighboring droplets may induce local spin flips leading to anti-ferromagnetic order.

Figure 1: A 2D spin lattice of walking droplets.

This work was supported by the US National Science Foundation through grants CMMI-1333242, DMS-1614043 and CMMI-1727565. G. P. thanks the program CNRS Momentum for its support.

\begin{thebibliography}{9}

\end{thebibliography}